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Abstract. The superior performance of CNN on medical image analysis
heavily depends on the annotation quality, such as the number of labeled
images, the source of images, and the expert experience. The annotation
requires great expertise and labor. To deal with the high inter-rater vari-
ability, the study of the imperfect label has great significance in medical
image segmentation tasks. In this paper, we present a novel cascaded
robust learning framework for chest X-ray segmentation with imperfect
annotation at the boundary. Our model consists of three independent
networks, which can effectively learn useful information from peer net-
works. The framework includes two stages. In the first stage, we select
the clean annotated samples via a model committee setting, the net-
works are trained by minimizing a segmentation loss using the selected
clean samples. In the second stage, we design a joint optimization frame-
work with label correction to gradually correct the wrong annotation and
improve the network performance. We conduct experiments on the public
chest X-ray image datasets collected by Shenzhen Hospital. The results
show that our methods could achieve a significant improvement on the
accuracy in segmentation tasks compared to the previous methods.
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1 Introduction

Deep neural networks (DNNs) have achieved human-level performance on many
medical image analysis tasks, such as melanoma diagnosis [5], pulmonary nodules
detection [14], retinal disease [4], and lumpy node metastases detection [1]. These
outstanding performances heavily rely on massive training data with high-quality
annotations. Annotation of medical images, especially for pixel-level annotation
for segmentation tasks, is costly and time-consuming. The process is experience-
prone, while the annotations from different clinical experts may have disagree-
ments that are usually inevitable for the blurred boundary of lesions and organs.
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Previous studies show that the DNNs trained by noisy labeled datasets can
cause performance degradation. That is because the huge memory capacity and
strong learning ability of DNNs can remember the noisy labels and easily overfit
to them [15,18,19]. Tackling the issue of annotation noises is a complicated and
challenging topic. Manually reducing the presence of incorrect labels, for example
by requiring a stronger committee of expert clinicians to do labelling, has to
be expensive, time-consuming and impractical. In this paper, we address this
problem in the insight of robust learning with the noisy labelled data inherent in
the training procedure. Many studies have addressed the issue of the noisy label
in medical analysis community. Goldberger et al. [6] added an additional softmax
layer to estimate the correct labels. Xue et al. [17] proposed to consider the noisy
sample and hard sample by an on-line sample selection module and re-weighting
module. Zhu et al. [19] proposed the automatic quality evaluation module and
overfitting control module to update the network parameters. Shu et al. [15]
presented an LVC-Net losses function by combining noisy labels with image local
visual cues to generate better semantic segmentation. Most of the approaches
adopted the strategy of selecting samples for training [17,19], exhibited their
feasibility in robust learning. However, these methods exist a strong accumulated
error caused by sample selection bias. The wrongly selected samples will influence
the network performance and further decrease the quality of selected samples.
Le et al. [10] addressed the sample selection bias issue by utilized a small set of
clean training samples to assign weights to training samples. The main drawback
of this approach was the extra clean labels were usually unavailable in the real-
world scenarios.

To tackle the challenging problem of noisy labeled segmentation masks, we
present a cascaded learning framework for lung segmentation using the X-ray
images with imperfectly annotated ground truth. In the first stage, our frame-
work selects clean annotated samples according to the prediction confidence and
uncertainty of samples, which is inspired by the ideas of Co-teaching [7]. Specif-
ically, our model consists of three independent networks being trained simulta-
neously, each network is real-time updated according to the prediction results
of the other two networks. For a clean annotated sample, the three networks
tend to produce high confidence prediction with smaller inter-rater variance.
Thus, the samples with close prediction and high confidence are selected as the
high-quality sample, which will be used to contribute to the weight backpropa-
gation process. Since the selection stage leads to a low utilization efficiency of
the valuable training data, we propose a label correction module in the second
stage, which can correct the imperfect label. Furthermore, a joint optimization
scheme is designed to cooperatively supervise the three networks with the orig-
inal label and the corrected one. Our method was extensively evaluated on the
Shenzhen chest x-ray dataset [3,8,16]. The results demonstrate a good capabil-
ity of our method to the issue of the noisy labeled boundary, that the cascaded
robust learning framework can more accurately perform the lung segmentation
comparing to other methods.
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Fig. 1. Illustration of the pipeline of our cascaded robust learning framework. (a)
shows the first sample selection stage, where three networks trained independently,
but updated according to the prediction of the other two peer networks. (b) and (c)
are the second stage. (b) shows our proposed label correction module, using the average
prediction of three networks followed by a sharpening function to produce the corrected
label ȳ. (c) shows the joint optimization scheme, the network is supervised by the
original label ŷ and the corrected label ȳ. The final output is given by the average of
the three networks.

2 Method

Figure 1 illustrates the framework of our cascaded robust learning method. In
the first stage, we design a three-networks sample selection module. The module
filters the clean samples and updates the three networks with the selected clean
samples. In the second stage, our method starts to correct the imperfect labels,
then use the corrected label and original label to jointly optimize the three
networks.

2.1 Sample Selection Stage

We study the task of chest x-ray segmentation, where the training set contains
images x and noisy labeled ground truth ŷ, while the clean ground truth y is
unknown. The goal for this fully supervised segmentation task is to minimize
the following object function:

min
θ

N∑

i=1

L(f(xi; θ), ŷi) (1)
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where L denotes the loss function (e.g., cross-entropy loss) to evaluate the quality
of the network output on inputs. f(θ) denotes the segmentation neural network
with weights θ.

Recent studies show that by updating the network with high confidence sam-
ples can improve the robustness to noisy labels [7,9,12]. Therefore, we propose a
novel sample selection framework (SS) to select high confidence samples as the
useful training instances. Our framework consisted of three independent net-
works, where they have identical architecture. We adopt the vanilla U-Net [13]
as the classifier in our experiment. In the training process, we select the high con-
fidence samples with small uncertainty to update each network, because those
samples are more likely to be clean labeled instances. In our experiment, we
empirically select half batch data as useful information. Concretely, the three
networks feed forward and predict the same mini-batch of data. Then for each
network, the useful samples for weight updating are obtained by the other two
networks as shown in Fig. 1(a). Taking network A as an example, the useful sam-
ple for network A is obtained from network B and C, where we first filter out the
high uncertainty (μ) samples by excluding the ones showing disagreed predic-
tion, then among the low uncertainty samples, the small loss samples was further
selected as useful samples for network A. We employ the agreement between two
models as uncertainty of each samples and calculate the uncertainty according
to Eq. 2.

μ = |L(fB(xi; θB), ŷi) − L(fC(xi; θC), ŷi)| (2)

where L denotes the cross-entropy loss. fB and fC denote the network B and
network C. θB and θC represent the weight of network B and C. Note that
the three networks has different training parameters as they are updated by
different selected samples in each mini-batch, they did not learn the bias in the
noisy labels at the same speed, and μ is not close to 0.

2.2 Joint Optimization with Label Correction

In the stage of sample selection, only partial samples can be used for training,
where it does not take full advantage of the imperfect training data. Therefore,
we design a joint optimization (JO) framework to train the network with the
original label and corrected label, so that the utilization efficiency of training
data can be maintained. In order to correct the noisy label, we design a label
correction module to work together with the joint optimization scheme.

Label Correction. The sample selection stage first trains an initial network by
using image x with noisy label ŷ. Then we proceed to the label correction phase,
as shown in Fig. 1 (b). We compute the average of three model’ prediction in
each iteration, that is followed by an entropy minimization step widely adopted
in semi-supervised learning [2,11]. Specifically, for the average prediction of the
three models, we apply a sharpening function to reduce the entropy of the per
pixel label distribution through adjusting the temperature:
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(a) chest X-ray (b) ground truth (c)dilation (d)erosion

Fig. 2. Examples of the noisy annotations. Red line indicates the clean ground truth.
(Color figure online)

q =
1
3
(fA((xi;θA), ŷi) + fB((xi; θB), ŷi) + fC((xi; θC), ŷi))

ȳ = sharpen(q, T )i = q
1
T
i /

L∑

j=1

q
1
T
j

(3)

where q is the average prediction feature map over three models, T is a
hyperparameter that adjusts the temperature. As T closes to zero, the out-
put of Sharpen(q, T ) will approach a one-hot distribution. Since we will use
ȳ = Sharpen(q, T ) as a corrected target for the model’s prediction later, fol-
lowing the setting of [2], T = 0.5 is chosen to encourage the model to produce
lower-entropy prediction.

Joint Optimization. We start the joint optimization stage after k epochs of
sample selection. For each uncertain sample, we produce a corrected label for the
imperfect input by the label correction module. The corrected label is used in the
training process together with the original label as a complementary supervision
to jointly supervise the network:

Ltotal = α × L(f(xi; θ), ŷi) + (1 − α) × L(f(xi; θ), ȳi) (4)

where L is the cross entropy loss, ŷ is the original noisy label, and ȳ is the
corrected label produced by the label correction phase. The weight factor α
controls the weights of the two terms. In our study, we set α = 0.5 that gives
the best results.

3 Experiments

3.1 Dataset and Pre-processing

We evaluated our method on the public Shenzhen chest x-ray dataset [3,8,16],
the segmentation masks were prepared manually by Computer Engineering
Department, Faculty of Informatics and Computer Engineering, National Tech-
nical University of Ukraine. The dataset contains 566 chest x-ray images and
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(a) Chest X-ray (b) ground truth (c) vanilla U-Net (d)ours

Fig. 3. Two examples of the segmentation results in the test data by different methods.
(a) is the input image, (b) is the ground truth. (c) and (d) shows the results of U-Net
and our method under 75% noise ratio.

each image has the left and the right lungs. We split the 566 chest x-ray images
into 396 images for training and 170 for evaluation. All the images were resized
to 256 × 256, and normalized as zero mean and unit variance.

3.2 Implementation

The framework was implemented in PyTorch, using a TITAN Xp GPU. We used
the Stochastic Gradient Descent optimizer to update the network parameters
with weight decay of 0.001 and a momentum of 0.9. We adopt an exponential
learning rate with an initial learning rate set as 0.001. We totally trained 100
epochs, the batch size was 32. We adopted the data augmentation including
random rotation and random horizontal flipping. In order to produce noisy labels
for the training data, we simulate imperfect annotation with noisy boundary in
real word scenarios. We randomly selected (noise ratio) 25%, 50%, 75% samples
from the training set to erode or dilate with the number of iterations (noise level)
n between 5–15 (5 ≤ n ≤ 15). We adopted the dice coefficient as evaluation
criteria for segmentation accuracy evaluation. Figure 2 shows the example of
some noisy annotation of the segmentation mask.

3.3 Quantitative Evaluation

The experiments were conducted on the Chest X-ray dataset. We trained the
network on the samples with different ratio of noisy labels and tested it by the
clean labels. Table 1 presents the segmentation performance of vanilla U-Net
(baseline) and our cascaded robust learning framework that were all trained by
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Table 1. Comparison between our method and various methods.

Noise ratio Noise level Strategy Dice (%) k

20 50 80

No noise – Vanilla U-Net 89.89 – – –

No noise – Co-teaching [7] 91.46 – – –

No noise – Ours – 92.52 92.50 92.36

25% 5 ≤ n ≤ 15 Vanilla U-Net 87.58 – – –

25% 5 ≤ n ≤ 15 Co-teaching [7] 89.06 – – –

25% 5 ≤ n ≤ 15 Ours-SS 91.42 – – –

25% 5 ≤ n ≤ 15 Ours – 92.11 92.81 93.06

50% 5 ≤ n ≤ 15 Vanilla U-Net 86.65 – – –

50% 5 ≤ n ≤ 15 Co-teaching [7] 88.56 – – –

50% 5 ≤ n ≤ 15 Ours-SS 88.87 – – –

50% 5 ≤ n ≤ 15 Ours – 90.14 90.05 89.56

75% 5 ≤ n ≤ 15 Vanilla U-Net 84.96 – – –

75% 5 ≤ n ≤ 15 Co-teaching [7] 90.23 – – –

75% 5 ≤ n ≤ 15 Ours-SS 90.41 – – –

75% 5 ≤ n ≤ 15 Ours – 91.07 90.19 91.17

noisy labels. We first trained the fully supervised vanilla U-Net with the noisy
ratio set to zero, which can be regarded as the upper-line performance. Compared
with the vanilla U-Net, our framework improves the segmentation performance
and achieves an average Dice of 0.925 on the clean annotated dataset, indicating
that the sample selection stage and joint-optimization stage can encourage the
model to learn more distinguishing features.

For the training dataset with different ratio of noisy labels, we observed
that as the noise ratio increases, the segmentation performance of the vanilla U-
Net decreases dramatically. Compared with vanilla U-Net, the sample selection
stage (SS) can consistently improve the performance by encouraging the model
to be trained by the selected data. Through the joint optimization (JO) stage
supervised by the corrected label and original ones, the segmentation accuracy is
further improved, suggesting that our method can effectively eliminate the effect
of the noise and gain performance by producing the correct label. In Fig. 3, we
show some segmentation results under 75% noise, in which our results have
higher Dice score than the vanilla U-Net. At all the noise ratio, we compared
our method with the state-of-the-art noise robust method [7], which select the
small loss samples according to the prediction of peer network. The results show
that our method outperforms the state-of-the-art method in all the noise ratio
setting.

In our experiment, we also investigated the impact of the starting epoch k
on the performance of our method. As shown in Table 1, the joint optimization
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Fig. 4. (a) The segmentation accuracy of different sample selection criteria. (b) The
segmentation accuracy of the U-Net and U-Net with only sample selection stage on
100% noise ratio setting. (c) The label accuracy of labels in the original dataset, and
labels corrected by the model at the end of training.

(JO) with label correction stage is started at 20, 50, and 80 epochs, respectively.
The experimental results show that the joint optimization stage can consistently
produce good results with different starting epoch k.

3.4 Analysis of Our Method

Sample Selection. Compared with the vanilla U-Net, our sample selection
stage (SS) shows higher segmentation accuracy under different noisy ratio, as
shown in Table 1. To validate the criteria of our sample selection, we conducted
another experiment that only selected the small loss sample. Figure 4(a) shows
the test accuracy with different sample selection criteria. It reveals that the test
accuracy significantly improved when considering the uncertainty in the selection
stage. To further validate the effectiveness of our method at the sample selection
stage, we applied our method on training dataset with 100% noise and noise
level n = 5, 20. As shown in Fig. 4(b), under this setting, the sample selection
stage shows worse segmentation accuracy than vanilla U-Net, because no clean
sample can be selected. The results decreased due to the low sample utilization
efficiency.

Joint Optimization. To analyze the contribution of the joint optimization
stage, we explore the label accuracy with and without the stage of joint opti-
mization and label correction. We calculated the Dice coefficient of the initial
noisy label (ŷ) and the corrected label (ȳ) of the final model at the end of the
training. Figure 4(c) shows the overall accuracy for severe noise situation (50%,
75%), where the Dice coefficient for all the original (Original-all) and corrected
label (Corrected-all), and the Dice coefficient only for the original noise label
(Original-noise) and corrected noise label (Corrected-noise) are presented. We
see that the label quality is improved by the scheme of joint optimization and
label correction, especially for those original noise labels.
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4 Conclusion

In this paper, we present a novel Cascaded Robust Learning framework for the
segmentation of noisy labeled chest x-ray images. Our method consists of two
stages: sample selection stage, and the stage of joint optimization with label
correction. In the first stage, the clean annotated samples are selected for network
updating, so that the influence of noisy sample can be interactively eliminated
in the three networks. In the second stage, the label correction module works
together with the joint optimization scheme to revise the imperfect labels. Thus
the training of the whole network is supervised by the corrected labels and
the original ones. Compared with other state-of-the-art models, our cascaded
robust learning framework keeps high robustness when the training data contains
imperfect annotate boundaries. Experimental results on the benchmark dataset
demonstrate that our network outperforms other methods on segmentation tasks
and achieves very competitive results on the noisy labeled dataset.
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